速度控制预测是驾驶员行为分析中一个具有挑战性的问题,旨在预测驾驶员在控制车速(例如制动或加速度)中的未来行动。在本文中,我们尝试仅使用以自我为中心的视频数据来应对这一挑战,与使用第三人称视图数据或额外的车辆传感器数据(例如GPS或两者)的文献中的大多数作品相比。为此,我们提出了一个基于新型的图形卷积网络(GCN)网络,即Egospeed-net。我们的动机是,随着时间的推移,对象的位置变化可以为我们提供非常有用的线索,以预测未来的速度变化。我们首先使用完全连接的图形图将每个类的对象之间的空间关系建模,并在其上应用GCN进行特征提取。然后,我们利用一个长期的短期内存网络将每个类别的此类特征随着时间的流逝融合到矢量中,加入此类矢量并使用多层perceptron分类器预测速度控制动作。我们在本田研究所驾驶数据集上进行了广泛的实验,并证明了Egospeed-NET的出色性能。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is of high possibility to be degraded due to noises and distortions. In this paper, we propose two novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (i.e., signal and object)-domain curvature regularization model. Fast numerical optimization algorithms are developed relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, which are further accelerated by GPU implementation. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. All our codes and data are available at https://github.com/Duanlab123/CurvNLOS.
translated by 谷歌翻译
With the fast development of big data, it has been easier than before to learn the optimal decision rule by updating the decision rule recursively and making online decisions. We study the online statistical inference of model parameters in a contextual bandit framework of sequential decision-making. We propose a general framework for online and adaptive data collection environment that can update decision rules via weighted stochastic gradient descent. We allow different weighting schemes of the stochastic gradient and establish the asymptotic normality of the parameter estimator. Our proposed estimator significantly improves the asymptotic efficiency over the previous averaged SGD approach via inverse probability weights. We also conduct an optimality analysis on the weights in a linear regression setting. We provide a Bahadur representation of the proposed estimator and show that the remainder term in the Bahadur representation entails a slower convergence rate compared to classical SGD due to the adaptive data collection.
translated by 谷歌翻译
Stance detection refers to the task of extracting the standpoint (Favor, Against or Neither) towards a target in given texts. Such research gains increasing attention with the proliferation of social media contents. The conventional framework of handling stance detection is converting it into text classification tasks. Deep learning models have already replaced rule-based models and traditional machine learning models in solving such problems. Current deep neural networks are facing two main challenges which are insufficient labeled data and information in social media posts and the unexplainable nature of deep learning models. A new pre-trained language model chatGPT was launched on Nov 30, 2022. For the stance detection tasks, our experiments show that ChatGPT can achieve SOTA or similar performance for commonly used datasets including SemEval-2016 and P-Stance. At the same time, ChatGPT can provide explanation for its own prediction, which is beyond the capability of any existing model. The explanations for the cases it cannot provide classification results are especially useful. ChatGPT has the potential to be the best AI model for stance detection tasks in NLP, or at least change the research paradigm of this field. ChatGPT also opens up the possibility of building explanatory AI for stance detection.
translated by 谷歌翻译
Motivated by the problem of matching vertices in two correlated Erd\H{o}s-R\'enyi graphs, we study the problem of matching two correlated Gaussian Wigner matrices. We propose an iterative matching algorithm, which succeeds in polynomial time as long as the correlation between the two Gaussian matrices does not vanish. Our result is the first polynomial time algorithm that solves a graph matching type of problem when the correlation is an arbitrarily small constant.
translated by 谷歌翻译
Existing solutions to network scheduling typically assume that the instantaneous link rates are completely known before a scheduling decision is made or consider a bandit setting where the accurate link quality is discovered only after it has been used for data transmission. In practice, the decision maker can obtain (relatively accurate) channel information, e.g., through beamforming in mmWave networks, right before data transmission. However, frequent beamforming incurs a formidable overhead in densely deployed mmWave WLANs. In this paper, we consider the important problem of throughput optimization with joint link probing and scheduling. The problem is challenging even when the link rate distributions are pre-known (the offline setting) due to the necessity of balancing the information gains from probing and the cost of reducing the data transmission opportunity. We develop an approximation algorithm with guaranteed performance when the probing decision is non-adaptive, and a dynamic programming based solution for the more challenging adaptive setting. We further extend our solutions to the online setting with unknown link rate distributions and develop a contextual-bandit based algorithm and derive its regret bound. Numerical results using data traces collected from real-world mmWave deployments demonstrate the efficiency of our solutions.
translated by 谷歌翻译
People with diabetes are more likely to develop diabetic retinopathy (DR) than healthy people. However, DR is the leading cause of blindness. At present, the diagnosis of diabetic retinopathy mainly relies on the experienced clinician to recognize the fine features in color fundus images. This is a time-consuming task. Therefore, in this paper, to promote the development of UW-OCTA DR automatic detection, we propose a novel semi-supervised semantic segmentation method for UW-OCTA DR image grade assessment. This method, first, uses the MAE algorithm to perform semi-supervised pre-training on the UW-OCTA DR grade assessment dataset to mine the supervised information in the UW-OCTA images, thereby alleviating the need for labeled data. Secondly, to more fully mine the lesion features of each region in the UW-OCTA image, this paper constructs a cross-algorithm ensemble DR tissue segmentation algorithm by deploying three algorithms with different visual feature processing strategies. The algorithm contains three sub-algorithms, namely pre-trained MAE, ConvNeXt, and SegFormer. Based on the initials of these three sub-algorithms, the algorithm can be named MCS-DRNet. Finally, we use the MCS-DRNet algorithm as an inspector to check and revise the results of the preliminary evaluation of the DR grade evaluation algorithm. The experimental results show that the mean dice similarity coefficient of MCS-DRNet v1 and v2 are 0.5161 and 0.5544, respectively. The quadratic weighted kappa of the DR grading evaluation is 0.7559. Our code will be released soon.
translated by 谷歌翻译